



## PHGenFit: Interface to GenFit for easy use

Michael McCumber(LANL),

Jin Huang(BNL),

Xiaorong Wang(NMSU),

Haiwang Yu (NMSU)

Apr. 12, 2016

## **PHGenFit**

- Motivation: simplify the use of GenFit.
- The design is independent of detector types.



#### Output: Fitted track:

- Can be extrapolated to Plane, line (beam line), Cylinder (Calorimeter matching).
- genfit::StateOnPlane
  - getPos(), TVector3, global pos
  - getMom(), TVector3
  - getCov(), TMatrixDSym
  - etc.

## Structure

- PHGenFitPkg (folder, package root)
  - GenFitExp (folder, contains classes in "genfit" namespace)
    - Field (folder)
      - Field2D (class, in namespace of "genfit")
    - G4eTrackRep (folder, place holder for the future.)
  - PHGenFit (folder, namespace)
    - Fitter (fitter class, contains geometry, field setup, fitter choice, etc.)
    - Measurement (input class)
      - PlanarMeasurement (TVector3 pos(), TVectro3 norm(), double du, double dv)
      - SpacePointMeasurement
      - etc.
    - Track (output class)
      - extrapolateToPlane()
      - extrapolateToLine()
      - extrapolateToCylinder()
      - extrapolateToPoint()

## Current status:

- In my folk of the sPHENIX coresoftware, under offline/packages/PHGenFitPkg:
- https://github.com/HaiwangYu/coresoftware/tree/master/offline/packages/PHGenFitPkg
- Status: Functional, can re-produce the the pT and the DCAr resolution plots showed in last software meeting.





#### PHGenFitPkg/Example/minimumTestPHGenFit.cc

```
Server
            //! Initiallize Geometry, Field, Fitter
45
            PHGenFit::Fitter* fitter = new PHGenFit::Fitter("sPHENIX_Geo.root", "sPHENIX.2d.root", 1.4 / 1.5, "KalmanFitter");
47
            //! Build TrackRep from particle assumption
            int pid = -13; //mu+
49
            genfit::AbsTrackRep* rep = new genfit::RKTrackRep(pid);
50
51
                                                                                                  Initialize track with seed
            //! Initiallize track with seed from pattern recognition
52
53
            TVector3 seed_pos;
54
            TVector3 seed_mom;
            TMatrixDSym seed_cov;
            get_seed(seed_pos,seed_mom, seed_cov);
56
            PHGenFit::Track* track = new PHGenFit::Track(rep, seed_pos,seed_mom, seed_cov);
57
59
            //! Create measurements
            std::vector<TVector3> v_pos = get_raw_measurements();
60
            double res_phi = 0.005; //cm
61
                                                                                                  Add measurements
            double res z = 0.04; //cm
62
            std::vector<PHGenFit::Measurement*> measurements;
63
64
            for (unsigned int imeasurement = 0; imeasurement < v_pos.size(); imeasurement++) {</pre>
                    TVector3 pos = v pos[imeasurement];
65
                    TVector3 n(pos.x(),pos.Y(),0);
                    PHGenFit::Measurement* meas = new PHGenFit::PlanarMeasurement(pos,n,res_phi, res_z);
67
                    meas->getMeasurement()->Print();
                    measurements.push_back(meas);
71
            //! Add measurements to track
72
            track->addMeasurements(measurements);
74
            //! Fit the track
                                                                                                                        Fit
            fitter->processTrack(track, true);
            //! Extrapolate to beam line
            genfit::StateOnPlane* state_at_beam_line = track->extrapolateToLine(TVector3(0, 0, 0), TVector3(0, 0, 1));
            state_at_beam_line->Print();
                                                                                      Various ways of looking at the
81
                                                                                      fitting result
            //! Event display
83
            fitter->displayEvent();
```

## Summary

#### Progress:

- PHGenFit is a thin layer between sPHENIX and GenFit, targeting minimize the code needed for using GenFit.
- Subsystem independent input design, basically taking "TVector3"s as the input.
- Currently functional but very rough.

#### Next step:

- On-the-fly G4Geo -> TGeo translation.
- Integrate with sPHENIX Hough, eg. outlier handling.
- Test in real sPHENIX.
- RAVE (work with Sanghoon)

Comments and suggestions are very appreciated.

# Backups

## pT resolution: GenFit vs Current Kalman



p0 term is 0.8% (relative) larger than Current Kalman p1 term is 3.7% (relative) smaller than Current Kalman,

## pT resolution: cont'd

sPHENIX pre-Conceptual Design Report, Oct, 2015 https://indico.bnl.gov/getFile.py/access?resId=0&materialId=11&confId=1483



**Figure 4.11:** Momentum resolution of the silicon tracker for single pions.

## **DCAr**

- Track DCAr resolution without vertex smearing using GenFit.
- This result is a last minute result. So very preliminary.

- DCAr resolution with vertex smearing in sPHENIX PCDR. So not ready for comparison yet.
- Mike is working on DCAr resolution without vertex smearing for comparison.



**Figure 4.5:** The DCA resolution of the silicon tracker in three track momentum ranges, from tracks reconstructed in central HIJING events.